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Abstract

This paper considers a durable object that is repeatedly resold

among a potential buyers that trade bilaterally, so that markets are

thin at any point in time. The results highlight di�erences between

possible contracting environments which, in practice, have become es-

pecially important as record keeping technologies improve. Traditional

ownership, where owners can set prices unilaterally, leads to reduction

in trade through markups; opportunities for future resale increase the

reduction in trade at any point in time. Markups decline over time.

When owners can collect a simple linear royalty on future sales, sub-

sidy is optimal so it is possible that distortions remain but are in the

reverse direction, with too much turnover and even ine�cient trans-

actions from higher to lower valuation consumers. This suggests that

�xed percentage perpetual royalties, as mandated in some countries

and proposed in others, may be counterproductive. A dynamic con-

tract designed to maximize pro�ts of the �rst owner achieves e�ciency

in all but the �rst sale, despite not achieving full surplus extraction

at any point. The �rst sale is distorted exactly as a one time sale,

which is a smaller distortion than any transaction under traditional

ownership. The dynamic contracts can be interpreted as nonlinear

perpetual royalties, a form of payment that has increasingly been dis-

cussed especially in digital art markets. The results highlight how
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these markets shape markup dynamics, as well as the role of perpetual

royalties. Such price discrimination can increase e�ciency, especially

in resale transactions.
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1 Introduction

This paper studies an economy where a perfectly durable object is repeat-
edly traded between people with di�erent independent private valuations of
the object. Buyer arrivals are rare, so the market is thin. Di�erent con-
tractual arrangements are considered in order to explore how the availability
of dynamic contracting arrangements impacts the structure and e�ciency of
allocations. Nonlinear contracts can be interpreted as perpetual royalties,
a form of contracting that is increasingly used in some markets as record
keeping technologies improve.

In practice, more complicated ownership structures are available due to
the ability of information technology to keep complicated records. Many
models of used goods point to a potential downside of this record keeping,
as interference in used markets; for instance, whereas books were once sold
only as physical items, ebooks are not; along with that has come much more
complicated terms and conditions surrounding these items.1 This paper fo-
cuses on the reverse: �rst ownership rights might include future payments
made to the artist when subsequent sales occur, called perpetual royalties.
Without interference concerns, more complicated ownership structures could
facilitate better rewards for creators, but it is open question whether this
would improve the functioning of second hand markets.

Perhaps the most natural example of a market similar to the one modelled
here is an art market. Perpetual royalties have been proposed in such mar-
kets, and used especially for digital art.2 But many very dissimilar markets
have similar features: when one soccer team sells the contract of a player to
another team, it sometimes comes with a share of the next sale.3 Sometimes
this is infeasible, but increasingly such contracts can be written for a variety
of goods, tangible and intangible. One could interpret the model as one of

1Ebooks �purchased� from Amazon are in fact not really owned but rather licensed.
These licensing agreements replacing ownership extends even to things like software in a
car. These sorts of licensing �terms and conditions� apply to many items we buy; even a
new car does not entitle the owner to unconstrained ownership of the software that the
car's computer uses.

2See https://news.artnet.com/market/swizz-beatz-sothebys-artist-royalties-1355674.
Such rights might be conferred via non-fungible tokens (NFTs), especially (but not
only) for digital art. More generally, web3 �smart contracts� encoded in blockchain
allow complicated contracts between many parties (see https://ethereum.org/en/smart-
contracts/.).

3In that context it is commonly called a sell-on clause.
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intellectual property: over time, increasingly pro�table uses of the technology
are found. The question of how best to transfer that technology is related to
the contracts studied here.

The model is intentionally stark to highlight some important economics
of these resale contracts. There are many buyers who arrive in sequence and
each draw, from a common known distribution, a valuation of each instant of
ownership. These draws are private information of the potential owners. The
physical environment is described by this distribution and the rate of arrival
of buyers; the di�erent economies describe di�erent contracting structures
for when to transfer the object, which is indivisible, between owners, and
with what associated transfers.

The model delivers several results. In a market without royalties, resale
opportunities for buyers make sellers more selective, e�ectively increasing
markups as measured by the probability of sale per meeting of a seller and
potential buyer. Enhancing contracts with the possibility of �xed or lin-
ear royalties on the next transaction can create new ine�ciencies including
the possibility that objects move from higher valuation to lower valuation
consumers in equilibrium. In a fully-nonlinear contracting environment to
maximize the value of the �rst owner, the usual monotone virtual valuation
assumption implies that only the �rst sale is distorted; subsequent transac-
tions occur e�ciently. The �rst sale is distorted exactly as a one time sale,
which is a lower distortion than in a simple ownership economy where prices
are posted by each owner. The e�ciency of subsequent transactions is some-
what surprising given that full extraction is never achieved; the sequential
nature of the price discrimination is what makes the model di�erent from the
distorted allocations in classic problems of second degree price discrimination
like Mussa and Rosen (1978). Moreover, these payments can be interpreted
as a market with history dependent payments between buyers, as well as
perpetual royalties paid to the initial owner which are positive at every his-
tory. In other words, nonlinear but positive perpetual royalties are possible,
pro�table, and increase e�ciency under monotone virtual values.

These results come from analyzing three di�erent contracting structures.
A benchmark environment of simple ownership mimics ownership with posted
prices, and no royalties to prior owners. Markov equilibrium can be described
by a recursion, which allows a direct comparison to the static problem: re-
sale opportunities discourage trade at any meeting. Then a version of the
model is considered where the full nonlinear contract is not available, but
owners can encourage or discourage future transactions by collecting a roy-
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alty (or paying a subsidy) on a future transaction. The optimal choice is a
subsidy. The intuition is that a subsidy, together with a price that induces
some marginal type to buy, pays less to all higher types since the higher types
hold the object longer, and therefore wait longer to sell. Because the subsidy
can extract surplus from inframarginal types, it is bene�cial to sellers. This
is of note for several reasons. First, some jurisdictions (for instance France)
mandate positive royalties paid to the original owner for future transactions
in some markets; others (like Canada) are considering similar rules. The
results suggest these rules may be counterproductive for sellers. Moreover,
many real world contracts for things like ebooks do the opposite: they make
resale more di�cult. This suggests that the motivations may not be enhanc-
ing trade on the item in question, but perhaps reducing competition between
the used good and a new good for sale by the same seller, as suggested in
the used goods literature.

Although actual subsidies to future transactions might face additional
problems (for instance that the buyer could pretend to make a transaction
right away, by transacting with themselves or a fake account), it shows that
the motive here is for sellers to encourage future transactions. To understand
the limits of this force, the paper then considers more sophisticated contracts
that map histories of ownership into prices in a possibly nonlinear way. The
contract is remarkably simple: static distortion on the �rst sale, and e�ciency
thereafter. Since there are always distortions greater than static under simple
ownership, the second degree price discrimination unambiguously increases
e�ciency. The intuition is similar to an optimal auction with constraints:
bidders can only be assigned units of time that occur after their arrival. Like
an optimal auction, monotone virtual valuations guarantee that higher types
are always allocated as much as possible. Consistent with this intuition,
without monotonicity of virtual valuations, e�ciency disappears.

One can think of the choice of contractual form as being driven by changes
in technology, but the model has policy implications concerning what sorts
of contracts should be allowed. In economies without complicated contracts
where ownership is sold at a �xed price, objects like books and art are subject
to the doctrine of copyright exhaustion, which limits the ability of owners to
control further use (or sale) of the object after it is transacted. The applica-
tion of these ideas in digital markets is an active policy question; in Europe,
there is discussion over whether the sale of things like ebooks should be sub-
ject to the doctrine of �rst sale, which would limit sellers ability to restrict
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buyers use of the product.4 A central question of this paper is how these
more complicated contracting environments impact e�ciency, which bears
on questions like the e�ciency implications of the exhaustion doctrines, and
the modern world's ability to avoid exhaustion through ownership structures
more complicated than were commonly used previously. The model suggests
that such policies may have e�ciency concerns when sellers can encourage,
rather than discourage, future transactions, but that very rich contracts may
avoid this concern. On the other hand, in a simpler environment, there is no
e�ciency motive for simply taxing future sales and exhaustion may prevent
interference in used markets by sellers that compete with their own used
products.

Section 2 introduces the physical environment; Section 3 describes op-
timal utilitarian allocation as a benchmark. Then Section 4 considers a
repeated ownership structure, where a sequence of owners post prices and
possibly future royalty payments. First is an economy with simple owner-
ship: a price is posted by the current owner, and, if a buyer arrives, that buyer
becomes the new owner and can post their own price. Then the contracting
space is modi�ed to allow the seller to take a share (including a negative
share, a subsidy) of future sales, as has been observed in art markets. Gen-
erally it is optimal to subsidize future sales. Finally, Section 5 considers a
full nonlinear contract devised by the �rst owner. This is not complete (�rst
degree) price discrimination but rather the limits of second degree price dis-
crimination; surplus is never fully extracted from buyers. However, under the
monotone virtual values assumption that is common in the price discrimi-
nation literature, there is never any distortion after the �rst sale. The �rst
sale is asymmetric to the rest because the seller knows its type but has to
elicit information about the next buyer; subsequent transactions are between
buyers for which information must be extracted from both.

1.1 Literature

The related existing literature is especially in three areas: used markets, price
discrimination, and legal limits to contracts and intellectual property.

4See Oprysk (2020)
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1.1.1 Used Markets

Existing models of used markets focus on several features that di�er from
the ones here. The primary friction here is the combination of private in-
formation about values and limited trade opportunities. This might occur
either because the market for the object is thin (for instance in art markets)
or because the market is thick but has substantial search frictions on other
dimensions. Embedding our framework in an equilibrium search model is not
part of this paper but would be a natural extension; the main di�erence is
that we take the rate of trading opportunities and distribution of values to
be exogenous, and an equilibrium model might endogenize both.

Classic models of second hand markets (for instance Waldman (1993);
Hendel and Lizzeri (1999); Gavazza (2011); Hendel and Lizzeri (2015)) focus
on thick markets, where trade occurs because of changes in relative values,
especially due to depreciation. Although these models do allow market fric-
tions in the form of transaction wedges, they do not explicitly model those
frictions the way this model does. Those models were designed especially to
think about markets for things like cars and airplanes and shoe machines.
The model here generates trade even in the absence of depreciation, although
the results do not preclude depreciation e�ects. Perhaps the closest paper
in this space is Stolyarov (2002), which has a similar preference structure to
the one used here, but will constant opportunities to trade, although poten-
tially at cost. One of the key elements of those papers is that the original
seller plans to sell many units, and as a result may want to interfere in used
markets that could compete with their sales of new goods. The model here
eliminates that and focuses on the reverse incentive: that sellers should want
to contract in a way that encourages resale.

Second hand markets have been considered explicitly in price discrimina-
tion strategies. Early examples include Swan (1972), who focuses on dura-
bility choice as a mechanism. Anderson and Ginsburgh (1994) further this
line to consider a thick market for second hand goods, with transaction costs,
and how a monopolist can price discriminate in the face of such a market.
Beccuti and Moller (2021) study how a �rm can price discriminate via time
of holding the object, which is similar to what the separating contract does
here, but without commitment and when sellers are more patient than buy-
ers. The holding time can be thought of as a resale decision; contracts sort
by whether the good is sold or leased.

Mechanisms with resale include models of auctions with resale such as
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Zheng (2002); Hafalir and Krishna (2008) In those models there is poten-
tially an ex-post allocation question for some mechanisms, but all of the
potential owners are present throughout. Here, the fundamental friction is
that bidders come in sequence. Because the valuations are drawn from a sym-
metric distribution, there would be no issue if all potential owners arrived
instantaneously.

1.1.2 Price Discrimination

Contracts that encourage resale is related to the large literature on the e�-
ciency of price discrimination. Pigou (1920)and Robinson (1933) highlighted
that although perfect price discrimination increases e�ciency, other forms of
price discrimination may or may not. The strand of literature they started
was, for the case of third degree price discrimination that started their in-
vestigation, reinvigorated by Schmalensee (1981) and Varian (1985). This
analysis was extended to competitive environments for instance in Holmes
(1989) and Corts (1998). More recently contributions include Armstrong and
Vickers (2001), Aguirre et al. (2010), and Vickers (2020). All of these study
static settings that di�er from the one studied here.

The dynamic contracting possibilities we consider map to increasingly
sophisticated possibilities for price discrimination. We show that adding
a �bit� of price discrimination can have qualitatively di�erent implications
from full second degree contract. Here the dynamic contract turns out to
have important similarities to static second degree price discrimination, as
cast in Mussa and Rosen (1978). While it is well known that these forms of
price discrimination may not improve e�ciency, the nature of the e�ciency
changes resulting from various forms of price discrimination is a recurring
question. An interesting di�erence here is that monotone virtual valuations
are connected to e�ciency of allocations.

Dynamic price discrimination has a long history. While this model is quite
di�erent, there is a relationship between this work and the classic work on
dynamic price discrimination with durable goods that dates to Coase (1972).
The commitment case, which most closely matches the price discrimination
contract constructed here, was formalized by Stokey (1979). In that model
there is pooling; Salant (1989) highlights the contrast between those envi-
ronments, where costs are essentially linear, with Mussa and Rosen (1978),
where costs are assumed to be strictly convex, and separation occurs. In
this paper, costs are endogenous and the result of an opportunity cost of
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foregone transactions in the future, and turn out to be strictly convex due to
the nature of the opportunity costs of foregoing future transactions. 5 Strict
concavity arises endogenously because increasing allocations both takes away
future opportunities, and makes the marginal type that will have the object
allocated to them in the future higher. This opportunity cost of future al-
location is the di�erence between this model and standard models of price
discrimination.

Conlisk et al. (1984) introduced the arrival of further buyers into durable
goods monopoly pricing. With commitment power, because the logic of
Salant (1989) applies, there is no change in the Stokey result: prices are
constant. Another important feature is that valuations �uctuate as new con-
sumers arrive. In the durable goods case, Biehl (2001) studies a two period
model with changing buyer valuation and Deb (2011) studies an in�nite hori-
zon model where values change at most once; both �nd prices that rise over
time. Garrett (2016) incorporates both buyers that arrive over time and
whose values change over time continuously, and shows that cyclical prices
are possible with commitment. A key di�erence from this paper and those
is that in those models there isn't a dynamic allocation of the good to solve;
the monopolist can produce more of the good to sell to more buyers, and the
question is what time paths do this job most e�ciently. A long literature
on dynamic contracting focuses on the case where buyers are always present
but information arrives to those buyers over time. A general structure for
those contracts is described in Bergemann and Valimaki (2010); Pavan et al.
(2014); further development of these ideas includes Eso and Szentes (2017);
Battaglini and Lamba (2019)

Another strand of price discrimination papers that uses waiting to pur-
chase as a discrimination tool when buyers must contract without fully know-
ing their valuation, for instance as is done with advanced purchase agreements
made before consumption for instance in airline markets. Examples include
Courty and Hao (2000), who show that in such contracts the nature of the
buyer's uncertainty shapes the contract they are o�ered. Chen (2008) con-
siders the possibility that the same buyer arrives repeatedly, so that price
discrimination with time is related to increasing information for sellers about
buyers' valuations from repeated purchases.

5A very important case, but less related to this paper, is the durable goods monopolist
without commitment. See for instance Stokey (1981); Bulow (1982).
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1.1.3 Exhaustion and other legal limits to contracting and own-

ership

There is a long debate in the legal literature about the bene�ts to the �rst
sale doctrine, and to what extent it is useful to allow contracts that avoid
its.6Legal scholars including Hovenkamp (2010) and Katz (2014) have dis-
cussed the potential merits and drawbacks of licensing contracts that avoid
exhaustion in the digital context, but without the ability to analyze what
such contracts might look like for long lived assets. This paper follows in
the tradition of Waldman (2015) in deriving such tradeo�s from an explicit
model. 7

This model abstracts from the usual interference concern, although in
several places interference provides a natural contrast to the results here:
whereas here dynamic contracting possibilities encourage future transfers,
interference generally discourages them, to further the monopolist's future
sales of similar products to other buyers. Therefore the model provides no
rationale for justi�cation of interference in used markets for the purpose of
limiting future transactions. Moreover, at least for simple leasing contracts,
our model provides no scope for the seller to improve their position with
leasing relative to selling, so we study a di�erent force that may be relevant
in modern digital markets but not in cases previously studied.

Weyl and Zhang (2022) study a related tradeo� in ownership rights: what
is the best way to resolve the tension between delivering surplus to initial
owners (who may in turn use that as an incentive to invest) versus markups
that result from their continued ability to dictate use. They consider essen-
tially static distortions from monopolization (although through an auction)
and show that ownership should be partial. Here, in a sense, an alternative
is investigated: how dynamic contracts could improve surplus for the �rst
owner and potentially improve e�ciency at the same time.

6For details on the legal foundations of the �rst sale doctrine, and its relationship to
digital goods, see Reis (2015).

7A separate set of legal issues surrounding leasing, monopolization, and price discrim-
ination is ones that pertain to leasing as a way to avoid Case-conjecture limitations to
dynamic pricing. These concerns are di�erent from the ones explored here and are at the
heart of the famous United Shoe Machinery case (see, for instance, Masten and Snyder
(1993) and Wiley et al. (1989))
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2 Environment

There is an in�nite horizon of continuous time. The discount rate is nor-
malized to 1. There is a single, indivisible, perfectly durable private good,
and many people who could eventually posses it. At Poisson rate λ > 0, an
opportunity for the current holder to trade with a new person arrives.8 A
person's type θ ≥ 0 describes their �ow utility per unit of time they have
the good. Every person draws their valuation θ ≥ 0 from a common, known
distribution F (θ). Valuations are private information but everything else is
publicly observable. Trading opportunities are temporary: trade between
two people must be taken at the time of arrival, or never.9 Money can also
be transacted between parties; the details of how the outcome depends on
what transfers are allowed is the main topic of Sections 4 and 5. Money is
valued linearly and separably from ownership bene�ts.

Throughout it is assumed that F has a continuous density f . Further,
it is maintained that the support of F is either compact, and normalized to
[0, 1], or is the positive real line, provided F has a �nite mean. Some results

apply to the case with increasing virtual valuations, i.e. that θ − 1−F (θ)
f(θ)

is
increasing; when that assumption is made, it will be stated explicitly.

3 Full Information Planning Benchmark

Consider a planner who, with full information, maximizes the present dis-
counted value generated by transactions, and observes valuations directly.
Section 5 shows that there exists a contract that can decentralize this alloca-
tion even with private information about types. Let the present discounted
value to the planner when the current holder is type θ be W (θ). Since any
strategy for transferring the object returns more when the current holder of
the object is higher, W (θ) is strictly increasing. Since any strategy for trans-
ferring the object returns more when the new potential holder is a higher
type, the strategy for transferring the object is clearly a cuto�: transfer if

8Continuous time here plays no special role relative to discrete time, except to turn
comparative statics on the discount factor into more easily interpreted arrival rates of
buyers.

9This last assumption is consistent with the usual assumption made in search models.
In two of the three contracting structures, where decisions are monotone, it is without
loss.
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the new type is above y. The value can be described recursively, where the
object is transferred to a new owner y above the current owner θ:

W (θ) = θ + λmaxy

∫
y

(W (x)−W (θ))f(x)dx

Since W (θ) is increasing the planner can optimize by setting y = θ. The
value can be further described by using the envelope condition:10

Proposition 1. W (θ) is continuous, convex, and di�erentiable withW ′(θ) =
1

1+λ(1−F (θ))

An important feature of this problem in understanding the results for
nonlinear pricing is that, even if the planner didn't fully value the object
as the people did, at θ per unit of time, but rather the strictly increasing
function w(θ), the value function is increasing and therefore the logic is the
same: transfer whenever someone with higher valuation arrives.

Corollary 2. Suppose the planner values ownership at some strictly increas-
ing, di�erentiable w(θ) ≥ 0. Then y(θ) = θ

Also useful is an alternative view of the planning problem. The problem
can be re-written as

W (θ) = maxddθ + (1− d)W u(Θ(d)) (1)

where the cuto� y is converted to discounted duration d ∈ [ λ
1+λ

, 1] of own-

ership described by d = 1
1+λ(1−F (y))

. Let y = Θ(d) is the cuto� that delivers

d, with Θ′(d) = (1+λ(1−F (y)))2

λf(y)
= 1

λd2f(y)
. Conditional on that cuto�, when a

new arrival is implemented, the planner gets the value conditional on being
above y given by W u:

W u(y) =

∫
y
W (x)f(x)dx

1− F (y)

We can use this formulation to show an important feature ofW u, which again
is true even if we replace the planner's payo� with a strictly increasing w(θ)
instead of θ, and will be useful in characterizing a non-linear pricing example
below:

10Proofs are contained in the appendix.
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Lemma 3. (1− d)W u(Θ(d)) is strictly concave in d

The concavity of this object, which corresponds to the negative of the
opportunity cost of allocating d to the current user, applies for any strictly
increasing w(θ); no concavity assumption is needed. Intuitively, as the plan-
ner allocates the object for longer, there are two e�ects: fewer future owners
are possible (which, for a given marginal owner reduces payo�s linearly) and
the marginal user increases (since more future owners must be excluded) as
d increases, which generates strict concavity.11

4 Sequential Ownership

4.1 A Sequential Ownership Economy

Suppose that the person holding the object is an owner; owners post a price
p at which they will sell the object. This economy corresponds to what
is termed, in copyright law, the doctrine of exhaustion: future owners are
unencumbered by any conditions, and therefore solve the same problem as
the initial owner, but with a possibly di�erent valuation. The analysis focuses
on Markov policies where the set of acceptable prices at which to buy, and
to set when selling, are a function of the owner's type alone. Denote by V (θ)
the value of owning the good if the owner's type is θ. This value is inclusive
of any revenue from selling the good but does not include the price paid for
the good. A price is accepted, therefore, if p ≤ V (θ).

Clearly V (θ) is strictly increasing since, if a higher type were to post
a price identical to a lower type's price, they would make the same revenue
from sales, and enjoy more utility in the meantime. Therefore a price posting

11Concavity allows us to analyze the problem simply with �rst order conditions; the
�rst term in the choice of d in (1) is linear in d and the second is concave, so the �rst order
condition for d is necessary and su�cient:

θ + λ

(∫
y(d)

W (x)f(x)dx− (1 + λ(1− F (y)))

λ
W (y)

)
= 0

dθ + λd

∫
y(d)

W (x)f(x)dx− d(1 + λ(1− F (y)))W (y) = 0

W (θ)−W (y) = 0

So y = θ as above.

13



p can be considered as equivalent to a marginal type y that buys the object
at price p; p = V (y). The value can then in turn be expressed as

V (θ) = θ + λmaxy(1− F (y))(V (y)− V (θ)) (2)

Usual contraction arguments guarantee existence and uniqueness of V . Since
any equilibria that was Markov as described above would have to satisfy this
recursion, existence and uniqueness come directly from the recursion.

The choice of y can also be thought of as determining the present dis-
counted duration of ownership d, where y = Θ(d) is determined from d =

1
1+λ(1−F (y))

; therefore alternatively we can write

V (θ) = θ + λ(1− F (Θ(d)))(V (Θ(d))− V (θ))

V (θ) = maxddθ + (1− d)V (Θ(d)) (3)

The following characterizes the solution:

Proposition 4. V is strictly increasing and strictly convex with V ′(θ) =
1

1+λ(1−F (y))
= d(θ) de�ned almost everywhere. For all θ < 1, any solution for

y in (2) is interior and occurs at a point where V (y) is di�erentiable. Any se-
lection of solutions y(θ) is strictly increasing with y(θ) > θ. When the support
is compact, V (1) = 1. When the support is unbounded, limθ→∞V (θ) = θ.

To understand how resale impacts allocations and prices, consider an
economy where an owner with valuation θ has one opportunity to transact
with a potential buyer with type drawn from F ; no additional trades are
possible. The buyer posts a price to maximize

(1− F (p))(p− θ)

so the optimal price solves ps = θ + 1−F (ps)
f(ps)

. This is also the choice of cuto�
y, and is such for the dynamic economy with λ = 0, since in that case
V (θ) = θ. When λ > 0, sellers are more selective (i.e. have a higher cuto� y)
than the static solution, which will be a relevant comparison to the nonlinear
contracting outcome below.

Proposition 5. Suppose λ > 0 and virtual values are increasing. Then for
all θ below the maximum of the support of F , y(θ) > ps(θ).
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According to Proposition 4, the problem is converging to the static prob-
lem as θ gets close to one, V (θ) converges to θ and V ′(θ) converges to one.
Long run markups are at their lowest. The intutition for the higher-than-
static cuto� comes from convexity of V . Compare the static problem, which
is V (θ) = θ, to the case with resale. Consider θ and ps(θ). In the problem
with resale there are two di�erences: the level of V is higher at both θ and
ps, and the function is convex. Consider �rst a linear function through both
V (θ) and V (ps). For any increasing linear function, the solution remains
y = ps; it represents just a �xed shift, plus a change in �units.� The actual
function V goes through these two points but is more convex than the linear
function. This changes the return to setting a higher cuto�: since the slope
is greater than the linear function at ps, setting a higher y increases the price
that can be charged at a greater rate under the convex V than it does under
the linear function. This leads to a higher cuto�.

Since resale makes sellers more selective, one might wonder whether in-
creasing λ can ever slow transaction, including the positive e�ect that more
meetings per unit of time makes more transactions for a �xed cuto�. It
cannon: despite sellers being more selective, more frequent meetings unam-
biguously speed up transactions, even though transactions per meeting fall:

Proposition 6. d(θ) is decreasing in λ.

Here the argument uses the recursive characterization directly: the slope
of the value function, which is d(θ), is decreasing in λ, by a contraction
argument.

To get a better sense for how the model with resale and the associated
markups work, consider the case of F (θ) = 1− e−γθ. In the static monopoly
problem of one sale, the solution is a constant markup y = θ + 1

γ
. A natural

question is whether a constant markup y = θ +m for some m could be the
solution to (2) in this case. Relative to the �rst best of y = θ, a constant
markup has a constant fraction of lost sales; 1 − P (x > θ + m|x > θ) =
1− e−γ(x+m)/e−γx = F (m). If markups were constant, then

d(θ) =
1

1 + λe−γ(θ+m)

And so, with constant markups the value Vm can be computed from V ′
m(θ) =
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d(θ) as

Vm(θ) = θ +
ln(1+λe−γ(θ+m)

γ
)

γ
−
ln( 1

γ
)

γ

= θ + ln(1 + λe−γ(θ+m))1/γ

Now return to the problem of choosing a price, but under Vm:

y∗m(θ) = argmaxye
−γy(Vm(y)− Vm(θ))

Lemma 7. Suppose F (θ) = 1 − e−γθ. Then dy∗m(θ)
dθ

= 1 cannot hold for all
θ. Therefore the repeated ownership model with exponential values does not
generate constant markups.

If an owner thinks that every future owner would charge a constant
markup, they owner would not choose the same. The implication is that re-
peated ownership generates endogenous �uctuations in markups, even though
the static markup is constant.

4.2 Royalties from future sales (and subsidies to future
sales)

When considering price discrimination strategies, one natural starting point
is some sort of two-part contract. Here an analogous two-part contract is one
which collects (or pays) both at the time of sale, and the time of next sale.

4.2.1 Simple royalty

To better understand the potential for nonlinear contracting opportunities
studied below, asuppose that an owner post not just p but also a royalty
(where a negative royalty corresponds to a subsidy) τ paid at the time of
the next owner's sale. Each owner faces an amount τ to be paid to the prior
owner and can charge a royalty τ ′ on the next owner. Let their payo�, net
of the royalty they face but excluding the price they paid, be V (θ, τ). They
face the recursive problem

V (θ, τ) = θ+λmaxy,τ ′(1−F (y))(V (y, τ ′)−τ+τ ′
∫
y

s(x, τ ′)f(x|x > y)dx−V (θ, τ))
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where p = V (y, τ ′) is the net payo�, and therefore the price p that can
be charged, to the marginal type y. The seller collects p − τ at the time
of the sale, and then collects τ ′ at a date in the future. The discounting
until next sale for a type θ facing a royalty τ is s(θ, τ) = λ(1−F (y(θ,τ)))

1+λ(1−F (y(θ,τ)))
;

s(θ, τ) ∈ [0, λ
1+λ

]. Di�erentiating the Bellman equation, dV (θ,τ)
dτ

= −s(θ, τ).
The �rst order condition for τ ′ is

dV (y, τ ′)

dτ ′
+

∫
y

s(x, τ ′)f(x|x > y)dx = −τ ′
∫
y

ds(x, τ ′)

dτ ′
f(x|x > y)dx

Whenever trade occurs, the seller chooses a subsidy:

Proposition 8. Suppose that d(θ, τ) < 1. Then the optimal τ ′(θ) < 0, a
subsidy.

The intuition for subsidy can be seen by considering a �xed y and con-
sidering the impact of a subsidy. The marginal consumer is fully extracted
regardless; however, a subsidy is less valuable to higher types who intend to
hold the object longer. Therefore the subsidy serves to extract from infra-
marginal types.12

This result implies that, for an initial owner with θ less than the maxi-
mum value and τ = 0, it is optimal to subsidize and have y < 1 and τ ′ < 0.
Inductively this implies that trade has subsidy forever almost surely. Subsi-
dies imply a speci�c deviation from the planners problem that cannot occur
under simple ownership. Notice that, if the current owner sets subsidy −τ ′,
then a new owner who has θ = 1 will set y < θ, since a type that arrives
with a type nearly as high as them would be willing to pay at least 1, plus
they would receive the subsidy. In other words, they will be willing to sell to
someone of a lower type then themselves, due to the subsidy, leading to the
good moving from higher to lower valuations. The subsidy encourages trade
past the point of e�ciency.

4.2.2 Ad Valorem royalty

Results are similar for a royalty/subsidy that is in percentages. Suppose a
percentage of all future revenue of the next seller could have a royalty applied,

12This intuition implies the result might be reversed if buyers had heterogeneous and
private values of λ; a buyer with high λ would be hit more by a tax for a given level of
θ. Such a model with multi-dimensional heterogeneity is an interesting topic to explore in
the future.
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both sales and any royalties they set. An owner of type θ facing a royalty τ
and setting y and future royalty τ ′ solves

V (θ, τ) = θ+λmaxy,τ ′(1−F (y)
(
(1− τ)(V (y, τ ′) + τ ′

∫
y

s(x, τ ′)R(x, τ ′)fy(x)dx)− V (θ, τ)

)
Where

R(θ, τ) = V (y(θ, τ), τ ′(θ, τ)) + τ ′(θ, τ)

∫
y(θ,τ)

s(x, τ ′(θ, τ))R(x, τ ′(θ, τ))

The �rst term is the price collected in state θ, τ from the next buyer, p =
V (y, τ ′) and the second term is royalties collected from the future owner.
Alternatively:

V (θ, τ) = θ + λ(1− F (y(θ, τ)) ((1− τ)(R(θ, τ)− V (θ, τ))

= d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ)

Then the envelope condition is

V2(θ, τ) = −s(θ, τ)R(θ, τ)

The �rst order condition for τ ′ is

V2(y, τ
′) +

∫
y

s(x, τ ′)R(x, τ ′)f(x)dx+ τ ′
∫
d (s(x, τ ′)R(x, τ ′))

dτ
= 0

Following the same procedure as with the per-transaction royalty:13

Corollary 10. Suppose d(θ) < 1. Then the optimal ad valorem royalty
τ ′(θ) < 0 is a subsidy.

It is possible to consider more general subsidies and royalties that apply
more than just to the next sale; the space of such possibilities is large. On
the one hand, a �xed ad valorem subsidy on all future sales runs up against

13In order to follow the same steps as in Proposition 8 we need to show that

Lemma 9. s(θ, τ)R(θ, τ) is decreasing in θ and τ

A proof is provided in the appendix.
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the same intuition; conditional on a set of marginal types, taxing future sales
does a worse job of extracting from inframarginal types. On the other hand
it is not a surprise that these subsidies are not observed in practice; a buyer
who could concoct a fake transaction could immediately collect the subsidy
(rather than waiting) and undo all the bene�ts to the seller. In the next
section, a more complicated contract is considered where both subsequent
transactions are encouraged, and the ability of buyers to work around the
encouragement with fake transactions is eliminated.

5 Nonlinear Contracts

This section considers an initial owner that could prescribe allocations to
new arrivals, and payments from those arriving buyers, as a function of their
reported type, and the history of previous reports. Although a great deal of
generality is allowed, a relatively simple structure emerges, where the next
arrival is implemented if it is above a cuto� that depends only on the last
arrival, and the cuto� is equal to the current owner's type, except for the
�rst sale. The �rst sale is distorted exactly like a static, once and for all sale.

The initial owner will be termed the seller, and will describe a fully history
dependent mapping from arrivals and reported types into allocation of the
object and prices paid to them. These net payments will later be interpreted
below as coming from payments between holders of the object and royalty
payments for subsequent sales paid to the seller; therefore it is natural to
assume that both the arrival and the reported type is public information,
since it needs to be transmitted via the future holders of the object who may
be the ones that �nd buyers. This makes keeping track of histories simpler,
and there is nothing payo� relevant for a potential buyer to learn from these
details, conditional on the terms they are being o�ered. In keeping with the
smart contracts and NFT motivation, there is full commitment: all terms
are encoded in the object at time zero.

To describe this general contract, de�ne a history ht that lists the times
and the reported type of the prior transaction. Therefore ht is unchanged
except at moments when a transaction occurs. The contract speci�es, for
any report θt at time t given history up to t, whether or not to transact
the object, subject to a mild measurability condition described below, and
the price the seller receives.14 Suppose a person arrives at t and is allocated

14This description excludes from histories dates when an arrival occurs and a report is
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the object, generating history ht. Describe their possession of the object (if
any) as lasting for any history in the collection H(ht), which is required to
be measurable. Let χ() be the indicator function. The buyer's payo� from
buying is

θ

∫
Ehτ |ht(e−τχ(hτ ∈ H(ht))dτ − p(ht)

Let d(ht) =
∫
Ehτ |ht(e−τχ(H(ht), hτ )dτ ; this payo� can then be written as

d(ht)θ − p(ht). Since the buyer cares only about d(ht) for any p(ht), from
the standpoint of incentive compatibility the seller can freely substitute any
contract that delivers the same d(ht) for each history and maintain incentive
compatibility at ht.

It is immediate that if a buyer of type θ �nds it optimal to purchase at
some history, then so does any buyer with a higher type, since they would
get a higher payo� from making the same report. Whether the object is
transferred can therefore be described by a measurable function θht(τ) which
is the cuto� type that is implemented at time τ > t starting from a purchase
at history ht if no transaction has occurred. Although this can be a compli-
cated object, it is always equivalent, in payo� to the seller and duration of
ownership for the owners, to a lottery over �xed cuto�s:

Lemma 11. The seller's choice θht(τ) can be replaced with a lottery over
constant cuto�s ∆θ and deliver the same future payo� to the planner and
duration for anyone allocated the object.

From the sellers standpoint, o�ering di�erent cuto�s at di�erent histories
hτ to a buyer at ht is equivalent to a lottery over those cuto�s. Therefore,
it is su�cient to allow the seller to choose lotteries over cuto�s (which will
imply lotteries over duration for the buyer); it will turn out that such lot-
teries are not optimal, and a deterministic cuto� is optimal. However this
consideration of lotteries shows that the problem is allowing for a rich set of
history dependent rules.

For any cuto�, the payo� to a seller, at the moment a type x arrives
above θ, of choosing a future lotteries over allocation ∆d(x) to those types,
can be written recursively as

Ju(θ) = max∆d(x),p(x)

∫
θ

E∆d(x) (p(x) + (1− d(x))Ju(Θ(d(x)))) f(x|x > θ)dx

made that was not implemented. Allowing contracts to depend on these events amounts
to allowing for randomization, which is shown below to not be useful to the seller. It
makes notation simpler to not include such arrivals in the history.
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where the expectation for lottery ∆d(x) is over durations d(x).15 One can
write this as

Ju(θ) = maxd(x),p(x)

∫
θ

(p(x) + conc ((1− d(x))Ju(Θ(d(x))))) f(x|x > θ)dx

(4)
where conc() is the concave envelope, and d(x) is the expected duration
across lotteries ∆d(x). The use of the notation Ju mirrors the function W u

in the planners problem, which is an analogy that is drawn out throughout
this section. It will turn out that, under the monotone virtual valuation
assumption made below, the function inside the envelope operator is concave,
so the solution is solved with a single cuto�.

Incentive compatibility for type x is

x ∈ argmaxx̂d(x̂)x− p(x̂)

and IR is that p(θ) = d(θ)θ. IC and IR can be replaced, for any increasing
d(x), by choosing the appropriate prices so that p′(x) = d′(x)x:

p(x) = p(θ) +

∫ x

θ

td′(t)dt

Note that (4) is like the classic formulation of Mussa and Rosen (1978),
where C(d) = −conc(1−d)Ju(Θ(d)) and the problem can therefore be written
as

Ju(θ) = maxd(x)

∫
θ

(
d(x)

(
x− 1− F (x)

f(x)

)
− C(d(x)))

)
f(x|x > θ)dx (5)

Where virtual valuations are computed using the conditional distribution but
1−F (x|x>θ)
f(x|x>θ)

= 1−F (x)
f(x)

.
The monotone virtual valuation assumption implies that this maximiza-

tion can be solved pointwise independent of θ; the implication, combined
with the fact that the virtual valuations don't depend on the lower cuto�,
is that d(x) does not depend on θ. Since C is concave according to Lemma
3, the solution is monotone in x and IC is satis�ed for the pointwise solu-
tion. Moreover lotteries are irrelevant; a single cuto� for each duration can
be used. Moreover, history impacts allocations only through the cuto� θ and

15With some abuse of notation, which will quickly disappear.
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not through allocations of types that report being above the cuto�. This is
an important feature of Mussa-Rosen contracts generally: if the seller dis-
covers that the buyer is distributed on [θ, 1] instead of [0, 1], but follow the
conditional distribution of F on that interval, the only change in the optimal
contract is that prices shift up by a constant to extract all surplus from the
marginal type θ.

Because this transformed problem coincides with the modi�ed planning
problem with w(θ) = θ − 1−F (θ)

f(θ)
, it has the same solution:

Proposition 12. Suppose virual valuations are increasing. Then t solution
for d(x) in Ju(θ) coincides, for each x, with the social planner's problem,
d(x) = 1

1+λ(1−F (x))
.

The price for type x is

p(x) =
θ

1 + λ(1− F (θ))
+

∫ x

θ

xλf(x)

(1 + λ(1− F (x)))2
ds

so that, for incentive compatibility, p′(x) = d′(x)x = xλf(x)
(1+λ(1−F (x)))2

.

5.1 Initial d

The initial owner solves, prior to the arrival of the �rst buyer, a di�erent
problem since they can choose a cuto� and know their own type. Their
problem, if their type is θ, is

J0(θ) = maxyθ + λ(1− F (y))(Ju(y)− J0(θ)) (6)

Rewrite the initial choice as

J0(θ) = J(θs)

where w(θs) = θ, i.e. θ = θs− 1−F (θs)
f(θs)

or θ+ 1−F (θs)
f(θs)

= θs, which is the formula
for the static solution ps = θs. Applying the result from Proposition 12, the
optimal initial y0 = θs = ps. The initial owner prices as if solving exactly the
static problem, regardless of λ. The dynamic contract generates e�ciency
on later sales at the expense of earlier ones, but is still more e�cient even in
the �rst transaction than simple ownership when repeated ownership occurs.
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5.2 Some Examples

To see the relationship between the planner's problem and the problem in
J , suppose F (θ) is exponential with parameter γ, so that w(θ) = 1/γ. Then
J(θ) = W u(θ)− 1/γ and H(θ) = W (θ)− 1/γ. Now consider the problem in
(6). This is equivalent to the planner's problem but where the value functions
are shifted by 1/γ and the current payo� is shifted up by 1/γ; therefore the
solution is to set the cuto� y = θ + 1/γ. The �rst purchase is distorted, but
not any subsequent ones. Moreover the distortion is only downward to zero:
a type may be excluded if it is the �rst to arrive, but conditional on being
an owner, the duration of ownership is e�cient.

This result also allows us to characterize the the value functions. Clearly
for exponential, it must be that H(θ) = J(θ) − 1/γ. For uniform, where
θ − w(θ) = 2θ − 1

H ′(θ) =
2

1 + λ(1− θ)

and so, since H(1) = 1,

H(θ) = 1− 2
ln(1 + λ(1− θ))

λ

5.3 The dynamic contract as perpetual royalties

Although the contract in this section is written as a list of payments to the
original owner, those net transfers can be described in a variety of ways.
One issue with the payments as described in p(x) is that the current holder
doesn't get any compensation when they are forced to transact; they would
prefer to hide forever and get their type, rather than nothing when the buyer
arrives. An alternative is to ask if the payments in the dynamic contract can
be rede�ned with payments to owners when they �sell,� such that they are
at least as well o� transferring the object as not. An additional bene�t of
such an arrangement is that it has a natural interpretation as prices, together
with a (possibly history dependent) perpetual royalty payment or subsidy.

Suppose that if the prior owner (which is the marginal type θ in the
optimized Ju(θ)) has type θ. They are promised a buyout amount b(θ) = θ,
which is their value from autarky, i.e. if they can run away and never trade.
The arriving type x pays this price θ, a royalty (possibly negative) r(x, θ)
to the �rst owner, and receives, once the next transaction takes place, x.
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Incentive compatibility requires that the net discounted payments equal p(x):

θ + r(x, θ)− (1− d(x))x = p(x)

Therefore

r(x, θ) = (x− θ)− (d(x)x− p(x))

This expression has a simple and intuitive interpretation: it is the gain from
the transfer (i.e. x− θ) less the rents that type x gets from their allocation.
Computing

dr/dx = 1− d(x)− (d′(x)x− p′(x))

= 1− d(x) > 0

Since d′(x)x − p′(x) = 0 by the IC constraint for type x. Since r(θ, θ) = 0,
the following characterizes the royalties:

Proposition 13. The royalties r(x, θ) can be written as

r(x, θ) =

∫ x

θ

(1− d(s))ds =

∫ x

θ

λ(1− F (s))

1 + λ(1− F (s))
ds ≥ 0 (7)

This de�nition of payments has (1) payment such that an owner would
(weakly) rather sell than run away and get their type forever, and (2) positive
royalties. Moreover, unlike a subsidy from the prior section, the structure
does not encourage mock transactions. Suppose that instead of reporting
their true type x, the buyer could report, in short succession, two arrivals,
one of type m < x and then one of type x. This results in the same net
payments as reporting x directly: in either case, the buyer pays θ to the
prior owner, and receives (1 − d(x))x from the true buyer that comes after.
They are on both sides of the payment of m. In terms of royalties, instead of
paying r(x, θ), the two reports result in payments of r(m, θ) + r(x,m). But
from the integral description in (7), there two amounts are the same.

Although there are many ways to de�ne payments between buyers and the
original monopolist, this one is �minimal� in the sense that it pays as little as
possible to have the buyer willing to sell when the time comes (which requires
b(θ, x) ≥ θ), and buyers are just indi�erent to making double reports if they
were able to. It results in positive royalties at every history, like perpetual
royalties. It looks like payments of prices b(θ) together with royalties. An
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important di�erence from the repeated ownership economy, however, is that
the monopolist still allows only a �xed menu of possible prices to be sold;
in the example of repeated ownership where subsidy was optimal, the future
prices of the object could not be directly controlled. This suggests a role for
perpetual royalties only if future sales can be regulated in this way. In a sense,
it is di�cult to imagine any perpetual royalty contract being possible, though,
if future transactions cannot be monitored. Moreover, modern contracts like
NFTs and ethereum �smart contracts� can ensure that contracts cannot be
made outside of the rules encoded in the object.

5.4 Discussion: Non-Monotone Virtual Values

A natural question is what happens in the dynamic contract when virtual
valuations are not monotone. First, it is immediate that e�ciency after �rst
sale cannot be maintained: the e�cient allocations are strictly increasing,
incentive compatibility is slack, which would imply pointwise maximization
and convex costs, but pointwise optimization is not monotone if virtual val-
uations are not. Second, since virtual valuations are maximized at the top
of the distribution, e�ciency is eventually reached; this is di�erent from the
usual �no distortion at the top� since it applies for any region at the top
where virtual valuations are monotone for all higher values, and is consistent
with the idea that e�ciency is greater later in the contract's life, as was true
with monotone virtual valuations.

The standard approach when virtual valuations are not monotone is to
iron. Ironing has slightly di�erent implications here because the allocations
from the ironed values impact both the payo� directly and indirectly though
the endogenous cost function. To see how this manifests itself in this problem,
suppose that virtual valuations have a single interior local maximum at θ1
and a single interior local minimum θ2 > θ1, and then ironed valuations are
de�ned to be equal to the true valuations except on some interval (a, b) where
they are constant. The di�erence from the usual ironing approach is that,
not only are the current payo�s payo�s dependent on the choice of ironing,
but also indirectly via the cost function.

Consider solving (5) with the ironed values. Since the payo� is weakly
increasing, a simple variant of the e�ciency result is immediate: the solution
is equivalent to treating the ironed values as an atom in the distribution of
θ, and the optimal rule is to always transact the object whenever a higher
ironed virtual valuation consumer arrives. This, however, doesn't pin down
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the rule in the ironed region, since values are constant; formally, both the
current value and the marginal cost of allocating duration are constant and
coincide. In other words, and rule in (a, b) is equally good at maximizing
ironed virtual valuation when the current owner is in that region.

As usual, a decreasing rule violates IC, and an increasing rule would
imply IC is slack (and therefore in turn not increasing), so the rule must
be constant; the constant cuto� (and the ironing point itself) must tradeo�
over-rewarding high θ with low virtual valuation, and under-rewarding low θ
with high virtual valuation. So the optimum cuto� is above a and below b.
This implies departures from e�ciency in both directions: near a, the cuto�
is above the e�cient one (i.e. ine�ciently few transactions) and near b it is
below (ine�ciently many transactions, including transactions to worse types
as with the subsidy for the simple royalty case).

Still, outside of the ironed region, there are e�ciency bene�ts from the
more complicated contracts. These bene�ts, including those from perpetual
royalties, suggest a potential downside from exhaustion rules that would limit
such contracts. Subsidy polices might be possible even with exhaustion, since
owner were o�ered only a free (but not negatively priced) option to accept
the subsidy, they would; o�ering them the right, at the same initial price to
own the object without further interaction with the seller is worse for them.
However the e�ciency bene�ts come from controlling future transactions in
a way that would likely run afoul of exhaustion. There is a trade o� between
these bene�ts of dynamic contracts, and the known concern for interference
in used markets.

6 Conclusion

This paper introduced a simple model of repeated transactions in a thin
market, where buyers come along periodically. Although quite abstract, it
highlights the usefulness of dynamic contracts that are now easy to write
in encouraging subsequent transactions. A full dynamic contract has an
interpretation as perpetual royalties, but bundled with pricing limitations on
subsequent owners. Such a contract can achieve e�ciency on all but the �rst
sale, while distorting the �rst sale less than any owner would if they could
not include such complicated terms. This shows both the complexity of such
arrangements, and the potential limitations to them. The e�ciency result
contrasts with repeated sellers such as in Hendel and Lizzeri (1999) where
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sellers discourage resale because it competes with their own sales, and with
static problems of price discrimination like Mussa and Rosen (1978) where
monotone virtual valuations do not generate e�ciency.

The model could be augmented in many ways in the future. One natural
concern in used markets is adverse selection a la Akerlof (1970). Because
the paper assumes independent private values, this doesn't arise here, but
future research could consider such concerns. Another form of heterogeneity
might be heterogeneity in owners' ability to �nd additional buyers (i.e. λ
in the model). This would likely change considerably the nature of royalty
agreements. Finally, this structure would be a natural one to embed in a
search model in order to think about how equilibrium considerations impact
these contracts.
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Appendix: Proofs

Proof of Lemma 1

Proof. If the support of f is compact, there exists a unique, bounded W (θ)
by usual contraction arguments. In the case where the support is the real
line, the payo� to the planner cannot exceed the payo� from the discounted
return to the current type's consumption plue every future arrival receiving
(there own copy of) the object forever. Since the expected payo� from each
arrival for the planner is the mean of F , the present discounted value of
future arrival is bounded because r > 0. Therefore denote this bound by
W (θ) ≤ θ + c for some �nite c. Then de�ne GW (θ) = W (θ) − θ. Since the
solution to the planners problem is bounded by θ + c, it must be the case
that the solution to the sequence problem can be written this way for some
bounded GW . But
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GW (θ) = W (θ)− θ = λmaxy

∫
y

(W (x)−W (θ))f(x)dx

= λmaxy

∫
y

(GW (x) + x−GW (θ)− θ)f(x)dx

Since limy→∞
∫
y
xf(x)dx is bounded as the mean of f is bounded, this maps

bounded, continuous functions from R+to R+ into such functions, and there-
fore usual contraction arguments show that it is the unique such function,
and therefore is one that describes the solution.

Guess thatW (θ) =
∫ θ

0
1

1+λ(1−F (x))
dx+C. Then it is immediate that y = θ

and, di�erentiating the Bellman equation,

W ′(θ) = 1− λ(1− F (θ))W ′(θ)

=
1

1 + λ(1− F (θ))

which veri�es the guess. Since this is increasing in θ,W is convex as asserted.

Proof of Lemma 3

Proof. Since

(1− d)W u =
λ(1− F (Θ(d)))

1 + λ(1− F (Θ(d)))

∫
Θ(d)

W (x)f(x)dx

1− F (Θ(d))

= λd

∫
Θ(d)

W (x)f(x)dx

the �rst derivative is proportional to (with constant of proportionality λ)∫
Θ(d)

W (x)f(x)dx− d ·W (Θ(d))f(Θ(d))Θ′

or ∫
Θ(d)

W (x)f(x)dx− (1 + λ(1− F (y)))

λ
W (y)

The second derivative can be signed by taking the derivative with respect to
y, since y is increasing in d. It is

−W (y)f(y)−W ′(y)
(1 + λ(1− F (y)))

λ
+W (y)f(y) < 0

since W is strictly increasing in y.
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Proof of Proposition 4

Proof. Begin with the case where F is compact. Then V (θ) continuous,
strictly increasing, greater than θ, with V (1) = 1 follows directly from con-
traction arguments: the operator de�ned by the right hand side of (3) maps
continuous, increasing functions greater than θ into (strictly) increasing func-
tions, so the �xed point must be strictly increasing.

We break the rest into a series of claims. Let the set of maximizers of (3)
be D(θ) with element d(θ).

Claim. For all θ < 1 and d ∈ D(θ), 1
1+λ(1−F (θ))

< d < 1

Proof. Since V (θ) > 0, it cannot be that If either d ≤ 1
1+λ(1−F (θ))

, or d = 1,

since then then V (θ) ≤ θ; the seller could do better by selling to some higher
types to get a value that was a convex combination of θ and a higher value.
Therefore y > θ.

Claim. Suppose θ′ > θ. For all d(θ′) ∈ D(θ′) and d(θ) ∈ D(θ′), d(θ′) ≥ d(θ).

Proof. Optimization implies

d(θ′)θ′ + (1− d(θ′))V (Θ(d(θ′))) ≥ d(θ)θ′ + (1− d(θ))V (Θ(d(θ)))

and

d(θ′)θ + (1− d(θ′))V (Θ(d(θ′))) ≤ d(θ)θ + (1− d(θ))V (Θ(d(θ)))

Subtract the second from the �rst:

d(θ′)(θ′ − θ) ≥ d(θ)(θ′ − θ)

so d(θ′) ≥ d(θ).

Claim. V is convex, and strictly convex except on intervals where there is a
constant solution d(θ)

Proof. Let θ = γθh + (1− γ)θl for θh > θl and 0 < γ < 1. Then

V (θh) ≥ V (θ) + d(θ)(θh − θ)

and
V (θl) ≥ V (θ) + d(θ)(θ − θl)
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since at those points the seller could choose the same price, and gain or lose
the di�erence in their value for the duration they held the object. But then

γV (θh) + (1− γ)V (θl) ≥ γ
(
V (θ) + d(θ)(θh − θ)

)
+ (1− γ)

(
V (θ) + d(θ)(θ − θl)

)
= V (θ)

Claim. Suppose V is convex in the problem maxy(1 − F (y))(V (y) − V (θ)).
Then, for all θ, the solution occurs at a point where V (y) is di�erentiable.

Proof. Since V is convex, V (y) always has left (V ′
l ) and right hand (V ′

r )
derivatives. Increasing and convex V implies that 0 ≤ V ′

l (y) ≤ V ′
r (y) So the

question is whether it is possible that V ′
l (y) < V ′

r (y). But for y to be optimal
it must be that

(1− F (y))V ′
r (y)− f(y)(V (y)− V (θ)) ≤ 0

and
(1− F (y))V ′

l (y)− f(y)(V (y)− V (θ)) ≥ 0

which is not possible if V ′
l (y) < V ′

r (y). Therefore V ′
l (y) = V ′

r (y) so the
function is di�erentiable at y.

Claim. V is strictly convex and d is strictly increasing.

Proof. V can only be weakly convex on intervals where the choice of y is con-
stant. But since y occurs at a point of di�erentiability, a necessary condition
for optimality is

(1− F (y))V ′(y)− f(y) (V (y)− V (θ)) = 0 (8)

Since V (θ) is strictly increasing this cannot be satis�ed for any y and two
values of θ.

When the support is unbounded� since V (θ) ≤ W (θ), V (θ) can be
bounded by θ + c. De�ne

VX(θ) = V (θ)− θ = maxd (1− d) (V (Θ(d))− θ)

= maxd (1− d) (VX(Θ(d)) + Θ(d)− θ) (9)
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(9) maps bounded, continuous, positive functions to the same if (1 −
d)Θ(d) can be bounded. But

(1− d)Θ(d) =
λ(1− F (y))

1 + λ(1− F (y))
y

which is bounded since limy→∞(1− F (y))y = 0 when F has �nite mean.
To see that the solution to (9) is the unique solution to (2), and therefore

describes the maximum, de�ne ψ(θ) = θ +maxθVX(θ). Uniqueness follows
from using the ψ norm as described in Duran (2000). Once the Bellman
equation is established, all of the other facts follow exactly as for the case
with compact support. 4

Proof of Proposition 5

Proof. Rewrite the optimality condition (8) as

1− F (y)

f(y)
− V (y)− V (θ)

V ′(y)
= 0

or
1− F (y)

f(y)
− V (y)− V (θ)

(y − θ)V ′(y)
(y − θ) = 0 (10)

where
V (y)− V (θ)

(y − θ)V ′(y)
< 1

since V is strictly convex. Now take any θ < y ≤ ps; then since virtual
valuations are increasing, y − 1−F (y)

f(y)
< ps − 1−F (ps)

f(ps)
= θ so

1− F (y)

f(y)
> y − θ >

V (y)− V (θ)

(y − θ)V ′(y)
(y − θ)

so (10) cannot be satis�ed.

Proof of Proposition 6

Proof. To be explicit about the role of λ, write

V (θ, λ) = θ + λmaxy(1− F (y))(V (y, λ)− V (θ, λ))
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or
V (θ, λ) = maxddθ + (1− d)V (Θ(d), λ) (11)

Since, for any y, the right hand side of the �rst equation is higher for higher
λ, it is increasing in λ, V (θ, λ) is increasing in λ as well as θ.

Suppose that the ∂V
∂θ

is decreasing in λ. (Note that at points of non
di�erentiability, this can be stated in terms of directional derivatives both
being decreasing in λ.) Let that be Property P. The following argument
shows that the functional equation operator de�ned by (11) maps functions
with Property P on the right hand side into functions with Property P on
the left hand side. Since Property P forms a complete metric space, the �xed
point of the contraction operator must satisfy Property P.

Since solutions are at a point of di�erentiability for any λ, they are char-
acterized by the �rst order condition

θ − V (Θ(d), λ) + (1− d)
dV

dθ
Θ′ = 0

The solution for d is decreasing in λ if the left hand side is decreasing in λ.
Since V is increasing in λ, −V is decreasing. For the second term, Property
P implies that dV

dθ
is decreasing in λ. By direct calculation Θ′ = 1

λd2f(y)

is decreasing in λ. Therefore the LHS is decreasing in λ for any d and
therefore the solution d(θ) is decreasing in λ. Since ∂V

∂θ
= d(θ), this implies

that Property P is indeed satis�ed for any value function generated from
one where Property P holds, and therefore the �xed point of the contraction
operator satis�es property P .

Proof of Lemma 7

Proof. The �rst order condition is

V ′
m(y

∗) = γ(Vm(y
∗)− Vm(θ))
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Now if m were constant, we could write (computing the value function as in
(??))

dy∗m(θ)

dθ
= −

γ
1+λe−γ(θ+m)

λγe−γ(y+m)

(1+λe−γ(y+m))
2 − γ

1+λe−γ(y+m)

=
1

1+λe−γ(θ+m)

−λe−γ(y+m)+1+λe−γ(y+m)

(1+λe−γ(y+m))
2

=

(
1 + λe−γ(θ+2m)

)2
1 + λe−γ(θ+m)

But there is no m which makes this one for all θ, a contradiction.

Proof of Proposition 8

Proof. By the envelope condition, dV (θ,τ)
dτ

= −s(θ, τ) ≤ 1, so marginal return
to y is increasing in τ , so y is increasing in τ . This implies that s is decreasing
in τ so the integrand on the right hand side of the �rst order condition is
negative. But since dV (y,τ ′)

dτ ′
= −s(y, τ ′) the left hand side is

−s(y, τ ′) +
∫
y

s(x, τ ′)f(x|x > y)dx

≤− s(y, τ ′) +

∫
y

s(y, τ ′)f(x|x > y)dx = 0

Therefore τ ′ ≤ 0 to make the RHS negative. Since d(θ, τ) < 1, τ ′ = 0 implies
s(y, 0) > 0, and since y is less than the maximum value of θ the inequalities
must be strict, so τ ′ < 0.

Proof of Lemma 9

Proof. For decreasing in θ, take θ and θ+ with θ+ > θ and suppose that
s(θ+, τ)R(θ+, τ) > s(θ, τ)R(θ, τ). Then by optimality, using

d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ) ≥ d(θ+, τ)θ + (1− τ)s(θ+, τ)R(θ+, τ) (12)

and

d(θ+, τ)θ++(1− τ)s(θ+, τ)R(θ+, τ) ≥ d(θ, τ)θ++(1− τ)s(θ, τ)R(θ, τ) (13)
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But then, taking the LHS of the (13) minus the RHS of (12), which must be
greater than the RHS of (13) minus the LHS of the (12):

d(θ+, τ)(θ+ − θ) ≥ d(θ, τ)(θ+ − θ)

so d(θ+, τ) ≥ d(θ, τ), but then clearly (12) is violated since both terms are
larger on the RHS.

Similarly, for decreasing in τ, take τ and τ+ with τ+ > τ . Then by
optimality

d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ) ≥ d(θ, τ+)θ + (1− τ)s(θ, τ+)R(θ, τ+)

and

d(θ, τ+)θ + (1− τ+)s(θ, τ+)R(θ, τ+) ≥ d(θ, τ)θ + (1− τ+)s(θ, τ)R(θ, τ)

Taking the LHS of the �rst minus the RHS of the second, which is greater
than the RHS of the �rst minus the LHS of the second:

(τ+ − τ)s(θ, τ)R(θ, τ) ≥ (τ+ − τ)s(θ, τ+)R(θ, τ+)

so s(θ, τ)R(θ, τ) ≥ s(θ, τ+)R(θ, τ+).

Proof of Lemma 11

Proof. Conditional on a cuto�, any continuation plan for new owners as
a function of θ > θht(τ) is feasible and doesn't impact duration for prior
innovators given the cuto�; therefore this payo� cannot vary with ht for each
θ and we can write the expected payo� as ω(θτ ). The expected payo� from
the next arrival, given a sequence of cuto�s θ(t) is therefore∫

e−τgθ(t)(τ)ω(θ(τ))dτ

where gθt(τ) is the probability distribution over next transaction given θ(t).
Duration is ∫

(1− e−τ )gθt(τ)dτ

De�ne the measure µ(θ) for any measurable subset A of [0,1]:

µ(A) =

∫
e−τχ(θ(τ) ∈ A)gθ(t)(τ)dt
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so that duration under θ(τ) is d = 1 − µ([0, 1]). This is the (discounted)
measure of instants when cuto�s in A is implemented. We can therefore
write the planner's payo� as ∫

ω(θ)dµ(θ)

Now suppose the seller draws a �xed cuto� from a measure de�ned by

∆(A) =

∫
A

(1/

∫
gθ(t)dt)dµ(θ)

where gθ is the distribution over arrival times for a �xed cuto� θ. Then their
expected payo� is identical to payo� from θ(t):∫

ω(θ)(

∫
gθ(t)dt)d∆(θ) =

∫
ω(θ)dµ(θ)

and duration provided is the same,∫
(1−

∫
fθ(t)dt)d∆(θ) = 1− µ([0, 1]) = d

The �nal step is to show that ∆ is a probability measure. Suppose that
θ(t) is a step function taking on two values, θ1 for [0, t̄] and θ2 for [t̄,∞).
Then, using G() as the cumulative density for g

µ(θ1) = (1−Gθ1(t))

∫
gθ1(t)dt

µ(θ2) = Gθ1(t)

∫
gθ2(t)dt

and so,

∆([0, 1] =
(1−Gθ‘1(t))

∫
gθ1(t)dt∫

gθ1(t)dt
+
Gθ1(t)

∫
gθ2(t)dt∫

gθ2(t)dt
= 1

The extension to θ(t) that has N steps, i.e. is a simple function, is immediate.
Taking a sequence of simple functions θn(t) → θ(t), with the associated
measures ∆n, then since

∫
d∆n = 1 for all n,

∫
d∆ = ∆([0, 1]) = 1 by

monotone convergence for the measure ∆ de�ned by θ(t).
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Proof of Proposition 12

Proof. Write the pointwise maximization as

J(θ) = maxdd(w(θ)) + (1− d)Ju(Θ(d))

and so

Ju(θ) =

∫
θ

J(x)f(x)dx/(1− F (θ))

Notice that this coincides with (1), except that the planner's payo� θ is
replaced with w(θ). But since that is an increasing function, the choice of d
is unchanged.
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